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A B S T R A C T

Pre-training has shown success in different areas of machine learning, such as Computer Vision, Natural
Language Processing (NLP), and medical imaging. However, it has not been fully explored for clinical data
analysis. An immense amount of clinical records are recorded, but still, data and labels can be scarce for data
collected in small hospitals or dealing with rare diseases. In such scenarios, pre-training on a larger set of
unlabeled clinical data could improve performance. In this paper, we propose novel unsupervised pre-training
techniques designed for heterogeneous, multi-modal clinical data for patient outcome prediction inspired by
masked language modeling (MLM), by leveraging graph deep learning over population graphs. To this end,
we further propose a graph-transformer-based network, designed to handle heterogeneous clinical data. By
combining masking-based pre-training with a transformer-based network, we translate the success of masking-
based pre-training in other domains to heterogeneous clinical data. We show the benefit of our pre-training
method in a self-supervised and a transfer learning setting, utilizing three medical datasets TADPOLE, MIMIC-
III, and a Sepsis Prediction Dataset. We find that our proposed pre-training methods help in modeling the data
at a patient and population level and improve performance in different fine-tuning tasks on all datasets.
1. Introduction

A large amount of medical data is collected on a daily basis in
many different hospitals. Often this data is stored in Electronic Health
Records (EHRs), digital patient charts containing various information
such as the patient’s medical history, diagnoses, treatments, medical
images, and lab or test results. However, even though a large amount
of data is recorded, for some tasks labeled data is scarce, as labeling
can be tedious, time-consuming, and expensive (Xiao et al., 2018).
Nevertheless, their digital and structured form can enable easy access to
apply learning-based methods to EHR data, in particular unsupervised
methods (Landi et al., 2020). Further, data collected in small hospitals
or for rare diseases is often limited (Mitani and Haneuse, 2020). In these
scenarios, the ability to leverage the large body of unlabeled clinical
data could boost the performance and confidence of prediction systems
on these smaller datasets. This, in turn, can support clinicians in better
and faster diagnosis and decision-making.
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Clinical records contain multiple heterogeneous data types, includ-
ing imaging and non-imaging data. While non-imaging data usually
is in numerical format, medical images consist of 2D or 3D data. In
this work, we use imaging biomarkers to convert the imaging data
to numerical features allowing a simple fusion of multi-modal input
and reducing the computational requirements. This allows us a very
general formulation of our method, which can be applied to both static
and longitudinal data, handling both imaging and non-imaging features
simultaneously. In our ablation studies, we further show that our model
can be extended to deal with spatial images.

Unsupervised pre-training can be a useful tool to exploit unlabeled
data and has shown great success in other domains, such as natural
language processing (NLP) (Mikolov et al., 2013; Pennington et al.,
2014; Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019), computer vision (CV) (Pathak et al.,
2016; Bojanowski and Joulin, 2017; Caron et al., 2018; Komodakis and
Gidaris, 2018; Bao et al., 2021) and medical imaging (Bai et al., 2019;
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Chen et al., 2019; Ouyang et al., 2020). In these domains various types
of pre-training have been proposed, including generative approaches
e.g. based on auto-encoders, contrastive learning, and the application
of hand-crafted pre-text tasks such as masked content prediction (Liu
et al., 2021; Han et al., 2021). In the medical domain, next to med-
ical imaging, pre-training was applied for instance on medical code
data (Shang et al., 2019; Li et al., 2020; Rasmy et al., 2021; Pang
et al., 2021) and textual EHR data (Park et al., 2022). However, it is
not explored enough for complex clinical data such as heterogeneous,
multi-modal patient records (EHRs). Only a few previous works inves-
tigated pre-training for this type of data, laying the ground-stone for
pre-training on heterogeneous EHRs (McDermott et al., 2021; Gupta
et al., 2020). They show the benefit of pre-training, especially for sce-
narios with limited labeled data. Nevertheless, their improvements via
pre-training are limited, in particular, if more labeled data is available,
and their pre-training task designs do not fully take the longitudinal
and complementary nature of clinical records into account.

In the papers mentioned above the community explored various
model architectures, including RNNs, GRUs, and Transformers. For
sequential data, such as natural language and time-series data, trans-
former models (Vaswani et al., 2017) are currently dominant. These
models often are combined with self-supervised masking-based pre-
training tasks, which has proven to be a promising combination (Devlin
et al., 2019; Bao et al., 2021; Li et al., 2020). In this work, we focus
on this type of self-supervised pre-training and combine it with a
graph-transformer-based network.

In the recent literature, a new way for multi-modal patient data
analysis using patient population graphs is getting explored. In a pop-
ulation graph, each node 𝑛𝑖 in the graph 𝐺 represents a patient and
he edges in G incorporate the similarities between the patients. Such
atient population graphs have been leveraged to help analyze patients’
edical data using the relationship among different patients (Ahmedt-
ristizabal et al., 2021). This enables clinically semantic modeling of

he data. By using the patient population graph during unsupervised
re-training, node representations based on feature similarities between
he subjects can be learned. These representations can improve the
nderstanding of the data, which can then help to improve patient-level
redictions. Therefore we model the EHR data in a patient population
raph for both pre-training and fine-tuning.

Several works successfully apply pre-training to graph data and
how the benefits on both common graph benchmarks (Zhang et al.,
020; Hu et al., 2020b) as well as domain-specific data such as molec-
lar or biological graphs (Hu et al., 2020a; Rong et al., 2020; Lu
t al., 2021). However, these methods are often specialized to a certain
omain, such as protein or molecule graphs, or focus on improving
he graph-level embedding. To the best of our knowledge, pre-training
as not previously applied to patient population graphs, where the
re-training task needs to be formulated to foster meaningful node-
evel embeddings, representing the patient’s data. As patient population
raphs have proven useful for outcome and disease prediction tasks
n clinical data, we believe a well-working pre-training technique for
atient population graphs is of high value to the community and has
he potential to improve performance in many patient-level prediction
asks.

In this paper, we propose a graph transformer-based model suit-
ble for learning on multi-modal clinical data in form of population
raphs. Motivated by the huge success of masked language modeling
re-training for transformer models, we propose masking-based pre-
raining methods and combine them with our graph transformer-based
rchitecture. Our pre-training methods are specialized for multimodal
linical data. Our main contributions are:

• We develop multiple novel unsupervised pre-training methods
based on masked imputation of clinical input features, which
are specifically designed for (longitudinal) EHRs and multi-modal
2

clinical data modeled as population graphs.
• We propose a novel (graph) transformer-based model suitable to
learn over heterogeneous clinical data allowing multi-modal data
fusion. The intelligent design and combination of state-of-the-art
building blocks allow us to deal with heterogeneous data and
show the potential of transformers for multi-modal clinical data
analysis. Our model is designed to handle various input data types
occurring in multi-modal clinical records, taking static and time-
series data and continuous as well as discrete numerical features
into account.

• By combining our graph transformer-based model with masking-
based pre-training, we show a way to translate the success of
pre-training of transformers in other domains to multi-modal
clinical data.

• We show significant performance gains through pre-training
when fine-tuning with as little as 1% and up to 100% labels in
both the self-supervised and the transfer learning setup, providing
a solution to limited labeled data.

We evaluate our method over general EHR data as well as brain
imaging data over two publicly available, medical datasets, MIMIC-
III (Johnson et al., 2016) and TADPOLE (Marinescu et al., 2018) for
Length-of-Stay prediction (Zebin et al., 2019; Wang et al., 2020; McDer-
mott et al., 2021), combined Discharge and Mortality Prediction (Mc-
Dermott et al., 2021) and Alzheimer’s disease prediction (Parisot et al.,
2018; Kazi et al., 2019b; Cosmo et al., 2020). We provide an extensive
analysis of our model and the effects of the different pre-training
approaches on fine-tuning performance for different amounts of labels.
Further, we test our method in a transfer learning setting, where we
pre-train on the MIMIC-III dataset and fine-tune on the Sepsis Predic-
tion dataset published in the PhysioNet/Computing in Cardiology Chal-
lenge 2019 (Reyna et al., 2019; Goldberger et al., 2000). Our source
code is available at https://github.com/ChantalMP/Unsupervised_pre-
training_of_graph_transformers_on_patient_population_graphs.

The remainder of this paper is structured as follows. After presenting
the most relevant related work in Section 2, we provide a detailed
description of our method in Section 3, including population graph
construction, the proposed model architecture, and the proposed pre-
training strategies. In Section 4 we first introduce the datasets we
use and our experimental setup and then show our results, as well
as their interpretation and discussion. Finally, a conclusion is given in
Section 5.

2. Related work

The main contribution of our method lies in investigating unsu-
pervised pre-training for heterogeneous EHRs modeled as population
graphs for patient-outcome prediction. Accordingly, we divided this
section into multiple parts focusing on patient population graphs and
pre-training for graph and EHR data.

2.1. Population graphs for patient outcome prediction

Several previous works use patient population graphs in combina-
tion with graph neural networks in the field of diagnosis and patient
outcome prediction (Ahmedt-Aristizabal et al., 2021). Parisot et al.
(2018) introduced the use of GCNs for the analysis of population
graphs in the medical domain for combining imaging and non-imaging
data. Given a population of patients, they construct a fully connected
graph, where the edges are based on the similarity of non-imaging
data, while the node features describe a patient’s imaging data. In-
ceptionGCN (Kazi et al., 2019a) introduces an inception module for
spectral GCNs, showing one way to deal with heterogeneous graphs
to model multi-modal data. Valenchon and Coates (2019) propose to
use multiple graphs based on different subject features. In another
work, Kazi et al. (2019b) propose to use an attention mechanism for

weighting the subject’s demographic features. Several works aim to
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improve the graph structure by either updating a pre-constructed graph
during training (Huang and Chung, 2020) or learning the optimal graph
end-to-end (Cosmo et al., 2020; Kazi et al., 2022). Other works focus on
dealing with missing (Vivar et al., 2018) or imbalanced data (Ghorbani
et al., 2022). Overall, modeling clinical data in a population graph has
been proven a promising direction in patient outcome prediction.

2.2. Masking-based pre-training

In the NLP domain, pre-training was adopted mainly using self-
supervised learning, aimed to understand the intrinsics of natural
language without the need for any human supervision (Qiu et al.,
2020). This allows to exploit the huge corpora of unlabeled text data.
BERT (Devlin et al., 2019) is one of the most important works about
pre-training transformer-based language models. It is designed to learn
bidirectional representations from unlabeled text. After being fine-
tuned with task-specific data, it has set a new state-of-the-art in many
NLP tasks. They introduce masked language modeling (MLM), which
until now is one of the most used pre-training tasks for NLP and was
further adapted to be used in several other domains (Yu et al., 2021;
Bao et al., 2021; Li et al., 2020). Given an input text, during MLM, 15%
of the input tokens are randomly masked and replaced with a mask
token ‘[MASK]’. After being processed by several transformer layers,
the final hidden representations are fed into an output softmax over
the defined vocabulary aiming to predict the masked token. For fine-
tuning, the model is initialized with the pre-trained weights, only the
final prediction layers are changed according to the task. In the medical
domain, BERT-like pre-training was applied for tasks such as disease
prediction (Rasmy et al., 2021), medication recommendation (Shang
et al., 2019), medical imaging (Wang et al., 2021), clinical outcome
prediction (Pang et al., 2021; McDermott et al., 2021) and clinical NLP
tasks (Alsentzer et al., 2019; He et al., 2020). However, it was only
rudimentary explored for heterogeneous EHR data.

2.3. Pre-training on graph data

The previously proposed pre-training techniques for graph data
reach from node-level to graph-level to generative tasks. These tasks
include tasks like attribute reconstruction, graph-level property pre-
diction, or auto-regressive generation of nodes and edges (Xie et al.,
2022). Hu et al. (2020a) propose to combine node and graph level pre-
training by first using a node-level task such as attribute masking to
train the model, followed by training to predict graph level proper-
ties (e.g. properties of a certain protein). Rong et al. (2020) propose
a transformer-based network, pre-trained by predicting properties of
masked sub-graphs (such as the number of neighbors of a certain atom
type) and the presence of certain motifs (recurrent sub-graphs such as
functional groups in molecules) in a graph. Zhang et al. (2020) propose
Graph-BERT, a translation of BERT pre-training to the graph domain.
Instead of processing a full graph, they create link-less sub-graphs of a
node’s neighborhood, add certain positional embeddings to each node,
and process them by a conventional transformer. As pre-training tasks,
they propose to reconstruct a node’s attributes using a linear layer
and to optimize the model to have high cosine-similarities between
the embeddings of nodes with a high ground truth intimacy. Hu et al.
(2020b) propose a generative graph pre-training framework called
GPT-GNN. For pre-training, both attributes and edges are generated,
given a partial graph as initialization. While the previous works focus
on unsupervised pre-training within one graph domain, Verma and
Zhang (2019) investigated transfer learning for graph data. Their model
consists of an input transformer, a simple linear layer, a graph encoder,
which is a conventional GNN, and a task-specific graph decoder. While
the input transformer and the graph decoder are dataset-specific, the
graph encoder is trained jointly on several graph datasets from the
bioinformatics and social network domain. They improve classification
results in comparison to classical GNNs and graph kernel methods. The
aforementioned methods could show the applicability of pre-training in
the graph domain. However, to the best of our knowledge, no previous
3

work investigated pre-training for patient population graphs.
2.4. Pre-training on EHR data

The most general form of multi-modal clinical records are Electronic
Health Records, which can contain any data recorded over a patient’s
stay in a hospital. As EHRs are usually recorded throughout the pa-
tient’s stay, they often have a sequential structure, making sequence
models like transformers a good fit to learn on this data. Some previous
works study how to pre-train BERT (Devlin et al., 2019) over simplified
EHR records for downstream tasks in disease and medication code
prediction. Here the input records contain only sequences of medical
codes, such as diagnosis or medication codes but do not include multi-
modal heterogeneous data. In many of these works, an adapted version
of MLM is used as a pre-training task (Shang et al., 2019; Li et al.,
2020; Rasmy et al., 2021; Pang et al., 2021). Agrawal et al. (2022)
investigate order-contrastive pre-training for clinical time-series data
and test their method on synthetic data and temporally ordered clinical
radiology notes. McDermott et al. (2021) propose one pre-training
approach over heterogeneous EHR data. They create a pre-training
benchmark over the eICU (Pollard et al., 2018) and MIMIC-III (Johnson
et al., 2016) datasets and come up with two baseline pre-training
methods, unsupervised masked imputation, where random time points
are masked, and supervised multi-task learning. Furthermore, they
define several downstream tasks to evaluate their method. Pre-training
and fine-tuning are performed over records of single patient stays in the
ICU using a bi-directional Gated Recurrent Unit. Gupta et al. (2020)
present an approach for transfer learning to improve outcome pre-
diction on longitudinal EHR records by processing each input feature
separately with a pre-trained TimeNet (Malhotra et al., 2017), the
encoder of an auto-encoder RNN, which was pre-trained to reconstruct
diverse univariate time-series data. The aforementioned methods have
one common drawback, as they often simplify the given EHR data in
order to apply pre-training. The few methods working with heteroge-
neous EHRs, do still not fully consider the form of EHR data in their
pre-training task design and show only limited improvements.

For the graph domain, several works show the promise of pre-
training. However, no work investigated pre-training for patient popu-
lation graphs, where it can lead to better patient outcome predictions.
On the other hand, work on pre-training for EHR data remains very
limited. The existing previous methods do not fully account for their
longitudinal and heterogeneous nature and show limited improve-
ments. We improve upon these works and propose novel EHR-specific
pre-training techniques based on masking for EHR data modeled as
population graphs. In the next section, we explain our method in detail.

3. Method

Our method is designed to target patient-level prediction tasks on a
dataset 𝐃, composed of the clinical records of N patients. Toward this,
we propose a two-step pipeline. The first step entails the use of un-
supervised pre-training methods to enhance the general understanding
of the data by our model. In the second step, we fine-tune the pre-
trained model on a downstream prediction task 𝑇 . The understanding
learned via unsupervised pre-training aims to improve the performance
on downstream tasks despite limited labeled data.

In the dataset 𝐃, let 𝑛𝑖 and 𝑟𝑖 be the 𝑖th patient and its corresponding
record, where 𝑖 ∈ [1, 𝑁]. Every record 𝐫𝐢 consists of a set of heteroge-
neous input features, denoted by 𝐫𝐢 ⊆ [𝐝𝐢, 𝐜𝐢, 𝐭𝐝𝐢 , 𝐭𝐜𝐢 ]. Each record can
contain all or a subset of these features. The feature types include
static discrete features 𝐝𝐢 ∈ N𝐷, static continuous features 𝐜𝐢 ∈ R𝐶 ,
and discrete as well as continuous time-series features 𝐭𝐝𝐢 ∈ R𝑆𝑑×𝜏

and 𝐭𝐜𝐢 ∈ R𝑆𝑐×𝜏 , where 𝑆𝑑∕𝑐 denotes the feature dimension and 𝜏 the
length of the time-series. Static features 𝐝𝐢 and 𝐜𝐢 encompass different
numerical values such as patient demographics or measurements taken
once for every patient, whereas the time-series features 𝐭𝐝𝐢 and 𝐭𝐜𝐢
consist of a sequence of values recorded throughout a patient’s stay

in the hospital, such as vital signs (e.g. heart rate, temperature) or
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Fig. 1. Overview of the proposed architecture. All input features are combined into one node embedding, applying transformer layers to enhance the time-series features. The
resulting graph is processed by several Graphormer layers and a linear task layer. The population graph is constructed using the original input features 𝑟𝑖.
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epeatedly measured lab values (e.g. Hemoglobin, glucose level). All
argeted downstream tasks 𝑇 are binary or multi-class classification
asks on a patient level with labels 𝐘 ∈ N𝐿 given for L classes, and
he task is to make predictions for all patient records in the test set.

As the same model is used for pre-training and fine-tuning, to un-
erstand our pipeline we will start by introducing the proposed model
rchitecture including the different sub-modules and the population
raph construction. Afterward, we give details about the pre-training
nd fine-tuning procedure.

.1. Model architecture

Our model is tasked with making node-level predictions for every
ode in the graph 𝐺, based on the input features 𝐝, 𝐜, 𝐭𝐝 and 𝐭𝐜. For
his task, we propose a model, consisting of an encoder and a decoder.
he encoder is used to generate meaningful node representations given
he input EHR graph. Thereafter the decoder’s task is to capture the
ssence of features inclined toward a node-level classification task. The
ame model is used in the pre-training as well as the fine-tuning stage.

.1.1. Encoder
The encoder comprises a data embedding module and a graph

ransformer module, based upon Graphormer (Ying et al., 2021). The
ata embedding module is responsible to fuse the heterogeneous input
eatures occurring in multi-modal clinical records. The fused features
re then used as node embeddings in our constructed population graph
hich is processed by the graph transformer module.

ata embedding module:
The data embedding module converts the heterogeneous input fea-

ures, 𝐝, 𝐜, 𝐭𝐝 and 𝐭𝐜, into one common representation to form node
mbeddings for every node in the graph.

To process static, discrete input features, we follow the conventional
raphormer (Ying et al., 2021) and apply an embedding layer, followed
y a summation over the feature dimension. This transforms the input
eatures 𝐝𝐢 into embedded features 𝐝′𝐢 ∈ R𝐷′ .

While Graphormer is limited to static, discrete input features only,
e extend the model to support static, continuous input features as
ell. As for continuous features embedding layers are not applicable,

hese features are processed by a linear layer. Again this results in an
mbedding vector 𝐜′𝐢 ∈ R𝐶′ .

Next to static features, we also support discrete and continuous
ime-series features 𝐭𝐝∕𝐜𝐢 ∈ R𝑆𝑑∕𝑐×𝜏 . We first upscale the feature dimen-
ion of every time step by applying an upscale layer 𝑈𝜃 with weights 𝜃.
or discrete features, this upscale layer is an embedding layer and for
ontinuous features, a linear layer, followed by a summation over the
4

eature dimension. These up-scaled features 𝐭(𝐮)𝐝∕𝐜𝐢
are further processed

y two transformer layers, as described by Vaswani et al. (2017),
o enhance the embeddings using temporal context. The transformer
ayers output adapted embeddings (𝑒1, 𝑒2,… , 𝑒𝜏 ) per time-step. The final
mbedding for the time-series features 𝐭′𝐝∕𝐜𝐢 , is then formed as the mean
f the time-step embeddings (𝑒1, 𝑒2,… , 𝑒𝜏 ), which allows working with
equences of variable lengths. This results in embedded features 𝐭′𝐝𝐢 ∈
𝑆′
𝑑 for the discrete and 𝐭′𝐜𝐢 ∈ R𝑆′

𝑐 for continuous features.
The feature vectors 𝐝′𝐢 , 𝐜

′
𝐢 , 𝐭′𝐝𝐢 and 𝐭′𝐜𝐢 can now be concatenated to

orm the final node embeddings 𝑛𝑖 ∈ R𝐹 for each of the N nodes,
here 𝐹 =

∑

𝐹𝑘⊆[𝐷′ ,𝐶′ ,𝑆′
𝑑 ,𝑆

′
𝑐 ]
𝐹𝑘 is the sum of the feature dimensions of

he transformed input features.
Graphormer Module: The backbone of our model comprises 𝐋

raph transformer layers as proposed by Ying et al. (2021). Dependent
n the dataset we vary the number of Graphormer layers. Graphormer
s based upon transformer (Vaswani et al., 2017) and outperforms
raditional graph neural networks in several graph-level prediction
asks. Their main contribution is the encoding of the graph structure,
ithout restricting attention to neighborhoods. Instead, they attend to
ll nodes in the graph and incorporate the graph structure via structural
ncodings, which encode the in and out degrees of the nodes, the length
f the shortest path between each node pair, and the edge features lying
n this path. The encoding of the in and out degree is added directly to
he node features of every node, while the other structural encodings
re added as a bias to the attention score between two nodes. Fig. 2
hows an overview of a Graphormer layer.

The input graph for Graphormer is constructed based on the features
f the input records 𝑟𝑖 as described in the following paragraph.
Graph Construction: Let 𝐺 = (𝑉 ,𝐸) be a population graph where

he nodes 𝑉 =
{

𝑛1,… , 𝑛𝑁
}

represent the patients. Each node is
ssociated with features coming from the patient record 𝑟𝑖, and the
dges 𝐸 =

{

𝑒𝑖,𝑗 ∶ 𝑖, 𝑗 ∈ 𝑁
}

define the connections between the nodes.
or each node pair 𝑛𝑖 and 𝑛𝑗 representing the records 𝑟𝑖 and 𝑟𝑗 , we
alculate a similarity score 𝑆(𝑟𝑖, 𝑟𝑗 ) between the features to decide
f there exists an edge 𝑒𝑖,𝑗 . As we have various feature types, we
efine different similarity scores, which are suitable for the respective
eatures, based on L2 distance for continuous features and absolute
atching for discrete features (Ahmedt-Aristizabal et al., 2021). After

omputing the similarities for all feature types we average them to get
ne overall similarity score for each record pair. Before averaging, all
ype-specific similarity scores are normalized to a range between zero
nd one using min–max normalization or sigmoid. As our focus does not
ie on graph construction, we choose a conventional graph construction
ethod and construct a k-NN graph with 𝑘 = 5. The value of 𝑘 is
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Fig. 2. Overview of a Graphormer layer as proposed by Ying et al. (2021). Graphormer is a graph transformer model based on global attention to all nodes. The graph structure is
ntegrated via different structural encodings. The centrality encoding, which encodes the in and out degree of each node is added directly to the node features. Given the shortest
ath between two nodes, the spatial and edge encoding encode the length and the edge features of the path. They are both added as a bias to the attention.
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hosen experimentally to avoid many disconnected components as well
s very densely connected regions (see supplementary material). We
ant to avoid disconnected as well as very densely connected regions,
s in both extremes the graph structure does not give any valuable
nformation about the relationships between the nodes. This similarity
core is additionally used as the edge feature of the edge between
wo nodes. This enables the model to give more attention to nodes
onnected over a path with high feature similarities. The experiment
ection contains a detailed description of the graph construction per
ataset.

.1.2. Decoder
The decoder consists of one or multiple linear layers for predicting

utputs for the current pre-training or downstream task. Depending on
he task, the decoder layer is adapted to fit the desired output dimen-
ions. When training for an end-task the decoder is a linear output
ayer, with an output dimension according to the number of classes
n the targeted task. During pre-training, the decoder also consists of
inear layers, one for each input data type. This layer predicts an output
ector in the same shape as the input data, where each element can be
nterpreted as the prediction for the corresponding input value. Even
hough we make a prediction for all input values, only the predictions
f masked values are used to update the model.

.2. Training pipeline

Until now we described the model architecture needed for fine-
uning and pre-training and its components. Now we will explain the
wo main steps of our pipeline, pre-training and fine-tuning, in detail.

.2.1. Pre-training step
We propose several unsupervised pre-training strategies for patient

opulation graphs of Electronic Health Records. All proposed pre-
raining methods use the paradigm introduced with masked language
odeling and task the model to predict masked features or attributes
erived from them. We design our masking techniques toward captur-
ng different aspects of clinical record data. As clinical records often
ontain longitudinal data, several of our proposed methods are focused
n this scenario, however, we also evaluate a version suitable for
tatic data. For all methods, masking is performed by replacing certain
eature values with a fixed value. Therefore, let 𝐹 ∈ R□𝑥𝜏 denote a
eature matrix and 𝑀 ∈ R□𝑥𝜏 denote the corresponding mask, where

corresponds to the feature dimension of the current feature matrix
nd 𝜏 to the length of the time-series. For static features 𝜏 = 1. The
imensions depend on the considered input features, which can be any
f 𝐝, 𝐜, 𝐭𝐝 and 𝐭𝐜. 𝑀 is defined as follows, where 𝑓𝑖,𝑗 is the feature value
t position (𝑖, 𝑗):

𝑖,𝑗 =

{

0 𝑓𝑖,𝑗 is masked
}

(1)
5

1 else g
or all static features, the masked features 𝐹 ′ are then computed as
n element-wise product of the mask with the feature matrix (Eq. (2)).
his leads to masked values being set to zero.
′ = 𝐹◦𝑀 (2)

or discrete features, a ‘mask token’ 𝑚 ∈ N is used to replace masked
lements (Eq. (3)). The mask token 𝑚 has an arbitrarily chosen, but
ixed value. The mask token does not influence the performance, as
he discrete masked input is processed by an embedding layer, which
unctions as a map from feature values to embedding representations.
′ = 𝐹◦𝑀 + 𝑚 ∗ (1 −𝑀) (3)

or time-series features, we further add a binary column per feature
o the input vector, that encodes which hours in the time-series are
asked. We optimize the model using (binary) cross-entropy loss (ml

lossary, 2022a) for the prediction of discrete features and mean
quared error loss (ml glossary, 2022b) for predicting continuous
eatures.

To mask the feature values we propose different masking strategies
or both static as well as time-series input data:
Feature Masking Given records with an arbitrary number of fea-

ures for all patients, we randomly mask a fixed percentage of the
eatures, called ‘masking ratio’, for every record 𝐫𝐢 in the training set.
he model is optimized to predict these masked values. The masking
atio is chosen experimentally. This pre-training technique aims to di-
ectly teach the model how the patient’s features relate to one another,
y optimizing it to predict some masked features while having access
o the remaining features of the patient. To this end, the masking ratio
hould be smaller than 100%, such that only a subset of the features of
ach patient is masked.
Static Feature Masking (SFM) For static patient data, every patient

eature encompasses only one value. Several of these features are
andomly selected to be masked and predicted.
Time-Series Feature Masking (TFM) When dealing with time-series

eatures, a completely random selection of feature values to mask
ould distribute the masked values over the features as well as the time

teps. As time-series features in clinical data often encompass repeated
r only slowly changing measurements like vital signs or treatment
eatures, feature values of neighboring time points tend to be similar.
nowing the previous and future value of a feature can make predicting
andom features too easy. An overly simple task has little value for pre-
raining, as the model does not have to develop a real understanding
f the data to solve it. Thus for Time-Series Feature Masking, we mask
ll time points of an experimentally chosen percentage of each node’s
eatures. In this way, the model can neither see previous nor future
alues to infer the masked feature, but rather has to rely on other
eatures and data from other patients.
Block-wise Masking (BM) Instead of masking all time points of the
iven feature time-series, we randomly mask a block of 𝐻 hours. Again
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the masking ratio, which determines how many features are masked, is
experimentally chosen. Here, the model can access previous and future
values of the same feature to make a prediction, but we choose a block
size 𝐻 > 1 to avoid knowing all neighboring feature values. The goal
of this pre-training method is to teach the model an understanding of
the temporal context within a patient’s stay.

Treatment Prediction (TP) Which treatments a patient receives is
directly correlated to his condition and its progression. Doctors use the
measurements taken from a patient, such as his vital signs and results
of disease-specific tests, to decide on the next action in the treatment
of the patient. In the health record of a patient the treatments which he
receives, e.g. medications that are given, are often recorded. With the
Treatment Prediction pre-training, the model is optimized to predict the
treatments a patient received, which could help to learn to understand
the disease of a patient, given the results of performed measurements.
In this task, the model needs to predict a binary label per treatment,
indicating if a patient received a certain treatment or not. In case the
treatments are given as time-series, we reduce them to binary indicators
to generate the labels. In the input data, we mask all treatment features.

Patient Masking (PM) All previously described pre-training tasks
ocus on predicting a subset of features of one patient or attributes
erived from them. To solve this task it can be sufficient to concentrate
n the unmasked feature values of the same patient. With our last pre-
raining method, we aim to encourage the model to take the other
odes in the graph into account. Toward this goal, we mask a random
ubset of patients in the graph. For these randomly selected patients, we
ask all measurement and treatment features and then again optimize

he model to predict these masked features. The only information that
emains unmasked is the patient’s demographics. Again the percentage
f masked patients is decided via experiments.
Unsupervised Multi-Task Pre-training All of the proposed pre-

training strategies have different prediction targets and aim to teach
the model distinct knowledge about the graph and the patient fea-
tures. Thus, combining them during pre-training can lead to a further
enhanced and comprehensive understanding of the data. Moreover,
training on all tasks simultaneously might have a regularizing effect
on the training and can lead to less overfitting. To combine the pre-
training tasks, for training we sample one task per batch, mask the
samples in the batch correspondingly, make a prediction and then up-
date the model with the corresponding loss. For the next batch, another
pre-training task will be sampled. For this combined pre-training task,
we need to adapt our decoder to be able to deal with multiple tasks
at once. We add a decoder layer for every pre-training task to the
model. Depending on which task was sampled the corresponding layer
is used and updated. To select the best model we collect all validation
predictions of one epoch and average the performance metrics of the
different tasks.

All pre-training tasks are sampled with equal probability. Our exper-
iments showed, that even with this straightforward task combination
multi-task pre-training is superior on all datasets and tasks. Optimizing
the sampling ratio per dataset could potentially improve the effect
further, however it would increase the effort needed to apply our
method to a new dataset.

3.2.2. Fine-tuning step
After pre-training the model with one of the tasks proposed in

the previous section, the pre-trained model is then fine-tuned for a
downstream task 𝑇 .

For Self-supervised Learning the encoder of the model for fine-
uning is initialized using the weights learned during pre-training,
hile the decoder is initialized randomly.

For Transfer Learning the initial encoder layers of every feature
ype (see Fig. 1) cannot be initialized with the pre-trained weights, as
he feature dimensions do not match. For example, if the pre-training
ataset has N and the fine-tuning dataset M continuous static input
6

eatures, the linear layer extracting these features needs to have an
input dimension of N or M respectively. Therefore these layers are
also initialized randomly, together with the decoder. The rest of the
encoder, including the transformer and graph transformer layers, are
pre-trained as for self-supervised learning.

In the following, we present our experiments, where we analyze the
performance of our model and the effect of the proposed pre-training
methods. To this end, we consider the performance improvement in
different downstream tasks 𝑇 after pre-training. We show results for
both the self-supervised as well as the transfer learning setting.

3.2.3. Handling of missing data
When working with EHR data, missing values are very common.

They can be caused by lack of collection or documentation, false
reporting, or irrelevance of certain values for a given patient (Wells
et al., 2013). For time-varying features, which are recorded multiple
times over a patient’s stay, another reason for the missingness is, that
these features are not measured regularly each hour, but at a different
amount of times, reaching from every two hours to once a day. In a
data pre-processing step, we impute these missing values, to create a
homogeneous input for our network, where every patient has the same
amount of features and measurements per feature. In detail, we carry
the first and last known value of a time-series forward and backward
respectively, while all values in between are linearly interpolated. For
features without any value for a patient, we use the mean of this
feature from the training set for all time steps. With this technique,
the interpolated values provide a meaningful estimation of the missing
values. During the pre-training stage, we compute the reconstruction
loss solely based on measured values, to avoid optimizing the model to
predict possibly incorrect interpolated values. Overall, this enables our
method to deal with missing values during the pre-training as well as
the fine-tuning stage.

4. Experiments

To evaluate our method we use three medical data sets and evaluate
with five different downstream tasks. In the following section, we first
describe the used datasets and then present and discuss our results and
ablation studies.

4.1. Datasets description

We use the two public data sets MIMIC-III (Johnson et al., 2016)
and TADPOLE (Marinescu et al., 2018), both medical datasets con-
taining multi-modal patient data, for evaluating our method in a self-
supervised setting. Additionally, we use the Sepsis Prediction dataset
from the PhysioNet/Computing in Cardiology Challenge 2019 (Reyna
et al., 2019; Goldberger et al., 2000) to test our model in a transfer
learning setup. The datasets are of different sizes and contain different
types of input features, allowing for a comprehensive evaluation of our
method.

4.1.1. MIMIC-III
As our first dataset we use MIMIC-III (Johnson et al., 2016), which

is a large dataset, including the EHRs for ICU stays of over 50,000
patients. We use the pre-processed dataset provided by McDermott
et al. (2021), which contains the data of ICU stays of 21.88K patients.
This data only includes adult patients (at least 15 years old), who stayed
one full day (24 h) or longer in the ICU. Each record contains three
types of features:

• Demographics: age (static, continuous), gender, admission type,
first care unit (static, discrete)

• Measurements: 56 different measurements, containing recordings
of bedside monitoring and lab test results in hourly granularity
(time-series, continuous). Missing values are frequent, as not
every measurement is taken every hour. We impute these missing

values with linear interpolation in a pre-processing step.
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Table 1
MIMIC-III dataset statistics.

No. of samples No. of features No. of features for graph

21.88K 76 56

Table 2
MIMIC-III task statistics.

Task No. of classes Occ. Majority class

LOS 2 51.81%
ACU 18 25.24%
ACU-4 4 38.37%

• Treatments: binary features per hour, denoting for 16 different
treatments, if they were applied in each hour (time-series, static)

or every patient, we only use data from the first 24 h of the stay, as our
argeted downstream tasks are defined on this input window. To make
ur results comparable to previous work, we keep the downstream
ask definitions and the restriction to the input window of 24 h.
ll continuous features in this dataset are normalized to the normal
istribution 𝑁(0, 1). We target three different downstream classifica-
ion tasks: Length-of-Stay (LOS) and Final Acuity prediction (ACU) as
efined in McDermott et al. (2021), as well as an adapted acuity predic-
ion task defined in this work. We propose this adapted task because the
riginal acuity prediction task contains a lot of very hard-to-distinguish
lasses (e.g. Federal Hospital vs. Short Term Care Hospital) as well as
lasses occurring very rarely (down to one sample in the whole dataset).
ur adapted task (ACU-4) summarizes the 18 classes of the original task

nto four meaningful groups. The three downstream tasks are defined
s follows:

ength-of-Stay Prediction (LOS) For this task, the goal is to predict
if a patient will stay longer than three days or not given the data
from the first 24 h of his stay. This can be considered a 2-class
classification problem.

inal Acuity Prediction (ACU) Here the task is to predict a combina-
tion of multiple outcomes including the patient’s mortality, the
discharge location, and the place of death. All together form a
multi-class prediction task with 18 classes given below:

Discharge Locations: Long Term Care Hospital, Rehab/Distinct
Part of Hospital, Transfer to Cancer or Children Hospital, Home
Health Care, Short Term Hospital, Intermediate Care Facility
(Icf), Transfer to Federal Hospital, Transfer to PsychHospi-
tal, Home, Left Against Medical Advice, Home With Home Iv
Provider, Other Facility, Hospice-Medical Facility, Skilled Nurs-
ing Facility (Snf), Hospice-Home, Snf-Medicaid Only Certified

Death Locations: In-ICU, In-Hospital

Final Acuity Prediction Adapted (ACU-4) Again the task is to pre-
dict whether the patient will be discharged, and if yes to where,
or die. However, we reduced the problem to the following
four classes: discharge to home, discharge to home but with
additional health care, discharge to care facility, and death.

The total 76 features of MIMIC-III are used as input features, and a
subset of them is further used for graph construction. Table 1 provides
the main statistics about the MIMIC-III dataset and Table 2 about the
different tasks.

Graph Construction: As MIMIC-III contains a large number of
patients, it is computationally infeasible to construct a graph containing
all patients and process it with our model. Thus, we randomly split
the samples into groups and form sub-graphs with 500 patients each,
which fit into memory. Table 3 shows the performance of our model in
the LOS task for different graph sizes. While the performance with 250
7

Table 3
Validation performance of our model with different sub-graph sizes for MIMIC-III. For
computational reasons, we performed this test only on one fold.

250 nodes 500 nodes 750 nodes

AUC 77.83 77.38 73.19
ACC 71.10 70.96 67.85

Table 4
Performance of our model with different graph constructions for MIMIC-III. For
computational reasons we performed this test only on one fold.

Age Treatments All Demographics Measurements

AUC 74.79 75.20 75.20 75.21 77.40
ACC 69.40 69.12 69.59 69.82 71.19

and 500 nodes is very similar, using a graph size of 750 nodes leads to a
performance drop. This indicates that the restriction to a limited graph
size does not harm performance, rather a too-large graph can even have
a negative impact. We hypothesize that a too-large graph size can make
it harder to learn a meaningful attention distribution as the attention
will be distributed over more nodes. At the same time, the gain of
relevant new information is limited, as already a large number of sim-
ilar patients are included in the graph. Every sub-graph contains train,
validation, and test patients. By splitting randomly we avoid making as-
sumptions about which patients the model should see at once. Instead,
we provide a diverse set of patients in all graphs and allow our model
to learn how to attend to these patients via the attention mechanism
in the graph transformer. For every subset, we compute the similarity
between each pair of patients. As MIMIC-III contains a large number of
heterogeneous features, we chose the features for graph construction
experimentally. Table 4 shows the performance in LOS prediction on
the first fold of MIMIC-III when using either all or only one specific
type of feature for graph construction. Using a graph based on the
measurement features proved to be superior, thus we use a similarity
computed over the measurement features to construct our population
graph. To be able to handle a different amount of measurements in each
time-series, we do not directly compare the hourly features, but instead
construct feature descriptors 𝑓𝑑 = (𝑚𝑒𝑎𝑛(𝑓 ), 𝑠𝑡𝑑(𝑓 ), 𝑚𝑖𝑛(𝑓 ), 𝑚𝑎𝑥(𝑓 )) per
patient and feature for each of the 56 measurement features. We then
compute the average similarity over all feature descriptors 𝑓𝑑 between
wo patients 𝑟𝑖 and 𝑟𝑗 :

𝑖𝑚(𝑟𝑖, 𝑟𝑗 ) =

∑

𝑓∈𝑓𝑑 ‖𝑓𝑟𝑖 − 𝑓𝑟𝑗 ‖

|𝑓𝑑 |
(4)

Given the similarities between all patient pairs for a sub-graph, we
construct a k-NN graph with k = 5. This leads to on average 18 ± 5.1
disconnected components in the graph.

Pre-Training Configuration: On MIMIC-III, we mask measurement
and treatment data from the first 24 h of each patient’s stay. As
described before, we compute the loss only over measured features,
which are inherently included in the data, and exclude the missing
values, which were interpolated in the pre-processing step. We compare
all of our proposed pre-training methods, which are designed to handle
time-series and treatment data. The masking configurations are given
as follows:

Time-Series Feature Masking (TFM): masking of 30% of the features;
Block-wise Masking (BM): masking of six-hour blocks in 100% of

the features;
Treatment Prediction (TP): all treatments are masked;
Patient Masking (PM): masking of 10% of the patients;
Multi-Task (MT): We combine all four tasks (TFM, BM, TP, and

PM). For all tasks, we use the same configuration as when trained
alone. For all pre-training tasks, we determined the masking ratios
experimentally pre-training with several masking ratios and fine-tuning
on LOS prediction. For the further tasks on MIMIC-III, we keep the same
masking ratios to be able to use the same pre-trained model. The results
of this experiment are shown in Table 5.
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Table 5
Experiments to find the optimal masking ratio for all pre-training configurations on
MIMIC-III. We fine-tune the pre-trained model with a label ratio of 10% on the first
fold of the MIMIC-III dataset and report validation AUC results in the LOS task.
For computational reasons we performed this experiment only over one fold, but as
MIMIC-III is a large dataset the findings are general enough as guidance for parameter
selection.

Ratio 0.15 0.3 0.5 0.75 1.0

BM 71.48 72.37 74.30 73.92 74.46
TFM 74.29 75.33 74.86 – –

Ratio 0.05 0.1 0.2 0.3 0.4

PM 74.84 76.83 75.65 75.74 75.82

Table 6
TADPOLE dataset statistics.

Task No. of
samples

No. of
feature

No. of features
for graph

No. of
classes

Disease Pred. 564 12 12 3

Table 7
TADPOLE class occurrences.

CN MCI AD

28.55% 56.56% 14.89%

4.1.2. TADPOLE
Additionally to MIMIC-III, which is a classical EHR dataset, we

evaluate our method on the TADPOLE dataset (Marinescu et al., 2018),
extending our method to multi-modal clinical data. Moreover, this
allows us to test our method on a less complex dataset including
only static data. This data was obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). TADPOLE contains a subset of ADNI comprising data
from visits of 564 patients. For each patient, we use a restricted set
of 12 features, which were claimed to be informative by the TADPOLE
challenge. They include demographics (age, gender, and occurrence of
apoe4 gene), results of four cognitive tests, and five imaging features,
which are extracted from MR and PET imaging. While the demograph-
ics and cognitive test results are discrete, the imaging features are
continuous. We normalize the continuous features between zero and
one. As a downstream task, we perform diagnosis prediction, classifying
each patient into one of the following groups: Cognitive Normal (CN),
Mild Cognitive Impairment (MCI), or Alzheimer’s Disease (AD). We
only use data from patients’ first visits to avoid leakage of information.
Table 6 provides some basic statistics about the TADPOLE dataset and
Table 7 the class occurrences for disease prediction.

Graph Construction: To construct a patient population graph on
TADPOLE, we compute a feature similarity between all patients. As we
work with a reduced feature set of only 12 features, we decided to use
all features to compute the feature similarity. Dependent on the feature
type this similarity is computed differently. For the demographics,
age, gender, and apoe4, we use absolute feature matching, checking
if patients have the same gender/apoe4 feature or are of similar age:

𝑆𝑑𝑒𝑚(𝑟𝑖, 𝑟𝑗 ) =
∑

⎧

⎪

⎨

⎪

⎩

1 if 𝑓𝑖 = 𝑓𝑗 else 0

1 if |

|

|

𝑎𝑔𝑒𝑖 − 𝑎𝑔𝑒𝑗
|

|

|

≤ 2 else 0
÷ 3, (5)
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where f = (apoe4, gender).
Table 8
Experiments to find the optimal masking ratio for pre-training on TADPOLE. We
fine-tune with a label ratio of 1% and evaluate with 10-fold cross-validation.

Ratio 0.1 0.2 0.3 0.4

AUC 91.45 ± 3.11 93.07 ± 2.29 93.49 ± 2.07 93.37 ± 1.95

Table 9
Sepsis Prediction dataset statistics.

Task No. of samples No. of features No. of classes Occ. Sepsis

Sepsis Pred. 40 336 40 2 7.27%

For the cognitive test results 𝐝𝐢, which are discrete but ordinal
features, and the continuous imaging features 𝐜𝐢, we calculate the
respective normalized L2 distances:

𝑆𝑐𝑜𝑔(𝑟𝑖, 𝑟𝑗 ) =

∑

𝑓∈𝐝𝐢 ‖𝑓𝑟𝑖 − 𝑓𝑟𝑗 ‖

𝑚𝑎𝑥(𝐝𝐢)
(6)

𝑆𝑖𝑚𝑔(𝑟𝑖, 𝑟𝑗 ) = 𝑠𝑖𝑔(
∑

𝑓∈𝐜𝐢

‖𝑓𝑟𝑖 − 𝑓𝑟𝑗 ‖). (7)

Given all these similarities, we construct a k-NN graph with k = 5,
dependent on the mean similarity (𝑆), which is computed as the mean
of 𝑆𝑑𝑒𝑚, 𝑆𝑐𝑜𝑔 and 𝑆𝑖𝑚𝑔 . This leads to on average 6.1 ± 1.1 separated
components in the graph.

Pre-Training Configuration: As TADPOLE is a less complex dataset
and does not include time-series data, we apply only Static Feature
Masking as a pre-training task. For this, we apply masking to the APOE4
gene feature, the cognitive test results, and the imaging features with
a masking ratio of 30%. We set the masking ratio experimentally,
as shown in Table 8. Although Static Feature Masking is a simple
masking technique, this experiment allows us to evaluate the benefit of
our overall framework on static, multi-modal, clinical data, including
the modeling as a patient population graph and the combination of
masking-based pre-training with a transformer-based architecture.

4.1.3. Sepsis prediction dataset
We work with the Sepsis Prediction dataset from the PhysioNet/

Computing in Cardiology Challenge 2019 (Reyna et al., 2019; Gold-
berger et al., 2000). It includes longitudinal EHR data, including vi-
tal signs and laboratory values, from patient stays in two different
hospitals, as well as the patient’s demographics.

The publicly available part of the Sepsis Prediction dataset includes
40,336 ICU patients, equally distributed between two hospitals. The
features of every patient include eight vital signs, 26 laboratory values,
and six demographics. As for MIMIC-III, the measurement features
(vital signs and laboratory values) are time-series features with hourly
granularity and a high ratio of missing values. Table 9 provides some
basic statistics about the Sepsis Prediction dataset.

For every patient, an hour-wise label indicates if the patient has
sepsis. In this work, we target a patient-level binary classification
instead of an hourly prediction and predict if a patient will develop
sepsis or not. We crop the data of each patient such that for septic
patients we only see a time window of 24 h ending six hours before the
onset of the sepsis. For non-septic patients, we select a random window
of 24 h. Thus we still task the model to identify sepsis before its onset,
but we concentrate on the time window close to onset. Further we apply
the same data pre-processing as in the MIMIC-III dataset, including the
normalization of continuous features to the normal distribution and
interpolation of missing values.

The graphs for the Sepsis Prediction dataset are created analogously
to MIMIC-III. Here this results in 17.7 ± 4.1 components per graph.

Comparison to MIMIC-III Like MIMIC-III, the Sepsis Prediction
dataset contains longitudinal measurement features and patient demo-
graphics. For the demographics, both datasets contain age and gender,
the other demographics are different. From the measurements in the
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Table 10
Learning rates for pre-training on MIMIC-III.

TFM BM TP PM MT

lr 1e−3–1e−4 1e−3–1e−4 5e−4 5e−4 5e−4

Table 11
Learning rates for from scratch training (SC) and fine-tuning (FT) on the MIMIC-III
dataset.

Task LOS ACU ACU-4

SC FT SC FT SC FT

lr 1e−4 1e−5 1e−4 1e−5 1e−4 1e−5/5e−5a

a5e−5 when pre-training with Patient Masking, else 1e−5.

Sepsis Prediction dataset, 24 features are also included in MIMIC-
III, while 10 features are new. Further, MIMIC-III contains additional
measurement features that are not included in the Sepsis Prediction
dataset. Moreover, the Sepsis Prediction dataset does not contain any
treatment features.

4.2. Implementation details

All experiments are implemented in PyTorch and performed on a
TITAN Xp GPU with 12 GB VRAM. For cross-validation, pre-training
is performed separately on the training data of every fold to avoid
leaking information from the validation or test sets during pre-training.
All experiments are optimized using the Adam optimizer (Kingma and
Ba, 2014). We manually tuned hyperparameters per dataset separately
for each pre-training task and for from scratch training as well as for
fine-tuning of each downstream task.

MIMIC-III: The backbone for the MIMIC-III model consists of 𝐋 = 8
Graphormer layers. The best model is selected given the performance
on the validation set, and all models are trained until convergence of
the validation performance. For a fair comparison with the state of the
art, all results are averaged over six folds as provided by McDermott
et al. (2021), each with an 80-10-10 split into train, validation, and test
data, and computed over the respective test sets. The learning rates for
the different pre-training and fine-tuning tasks on MIMIC-III are given
in Tables 10 and 11. In Table 10 we denote the use of a polynomial
decaying learning rate as 𝑠𝑡𝑎𝑟𝑡_𝑙𝑟 − 𝑒𝑛𝑑_𝑙𝑟.

TADPOLE: The backbone for the TADPOLE model consists of 𝐋 =
4 Graphormer layers. For pre-training, we train the model with a
learning rate of 1e–5 for 6000 epochs. For from scratch training on the
downstream task, we use a polynomial decaying learning rate, which
is reduced from 1e–5 to 5e–6 for 1200 epochs. To fine-tune pre-trained
models, we use a learning rate of 5e–6 and perform training again for
1200 epochs. When training with a label ratio of 1% we reduce the
epochs to 200, as for this small amount of data, the pre-trained models
reach optimal performance much faster than other models. All results
are computed using 10-fold cross-validation.

Sepsis Prediction dataset: We use the same model as for the MIMIC-III
dataset with 𝐋 = 8 Graphormer layers. The encoder is adapted to fit the
Sepsis Prediction dataset’s features. We perform 5-fold cross-validation,
where every rotation is split into train, validation, and test sets with an
80-10-10 split, and select the best model based on the validation set
performance per split. We use a learning rate of 1e–4 for both from
scratch training and transfer learning.

4.3. Results and discussion

In our experiments, we aim to evaluate the proposed model on
different downstream tasks, compare the performance of our model to
related work and evaluate the performance improvement that can be
reached with our pre-training methods. Further, we compare different
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Table 12
Accuracy and AUC of the proposed method compared with DGM on TADPOLE and the
model proposed by McDermott et al. (2021) on MIMIC-III.

Model ACC AUC

MIMIC-III: LOS

Wang et al. (2020) - RF 68.3 73.3
McDermott et al. (2021) Not reported 71.00 ± 1.00
Proposed 70.29 ± 1.10 76.17 ± 1.02

MIMIC-III: ACU

McDermott et al. (2021) Not reported 78.00 ± 2.00
Proposed 43.67 ± 0.83 79.42 ± 2.72

TADPOLE

Cosmo et al. (2020) 92.91 ± 02.50 94.49 ± 03.70
Kazi et al. (2022) 91.05 ± 5.93 96.86 ± 1.81
Proposed 92.59 ± 3.64 96.96 ± 2.32

pre-training methods to one another and provide various ablation
studies, investigating the importance of the different modules of our
proposed model architecture.

4.3.1. Comparative methods
To show the positive impact of our (Graph)-Transformer-based ar-

chitecture, we compare our model to related work without any pre-
training. Therefore we train our model from scratch on the full train-
ing data of MIMIC-III and TADPOLE for different downstream tasks
and compare the results to previous work. The results are shown in
Table 12.

For MIMIC-III, both targeted downstream tasks, LOS and ACU, were
defined in the EHR pre-training benchmark by McDermott et al. (2021).
Similar tasks were targeted by previous work, but only a few works
target the same tasks on the MIMIC-III dataset. As we use the exact task
definitions by McDermott et al. and use the pre-processed dataset they
provide, comparing with their work is most meaningful. Further, we
compare to MIMIC-Extract (Wang et al., 2020) for LOS. They compared
different models for 3-day length-of-stay prediction. We report the
performance of the best-performing model, which is a random forest
classifier. ACU prediction was so far only targeted by McDermott et al.
and our newly defined ACU-4 task was not targeted before, which is
why we cannot provide results of previous work. We outperform the
random forest model by Wang et al. in LOS as well as the GRU-based
model by McDermott et al. in LOS and ACU prediction, showing the
benefit of modeling MIMIC-III as a population graph as well as our
model architecture (Table 12).

For the TADPOLE dataset, the most important previous works
and state-of-the-art models in diagnosis prediction on TADPOLE are
DGM (Kazi et al., 2022) and a latent graph learning framework pro-
posed by Cosmo et al. (2020). Similar to our work, they model the
data as a population graph, but instead of pre-defining this graph, the
proposed models learn a population graph in an end-to-end manner
for a given downstream task. This allows the model to decide which
patients should be connected depending on the current task. Even
though our population graph is fixed, our model still has the freedom
to weigh the importance of other patients by learning global attention
toward all nodes in the graph. Besides, one recent arxiv paper (Kazi
et al., 2021) could further improve disease classification performance
on TADPOLE by learning the importance of the given input features.
However, it is out of context for this work. We outperform the work
by Kazi et al. (2022) and reach similar accuracy as Cosmo et al. (2020)
while outperforming in AUC, which is the more important metric as
TADPOLE is an imbalanced dataset (Table 12).

Overall, we show significant performance gains on the MIMIC-III
dataset and achieve comparable results on TADPOLE. The good results
on both MIMIC-III and TADPOLE show that the proposed data modeling

and model architecture are a good fit for the task at hand.
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Table 13
Performance of the proposed model in accuracy and AUC trained from scratch (SC) or fine-tuned after pre-training (FT) with the different proposed pre-training tasks (TP, BM,
TFM, PM, MT) for different label ratios for the LOS task.

MIMIC-III: LOS

Labels Metric SC FT: TP FT: BM FT: TFM FT: PM FT: MT

1% ACC 59.86 ± 2.11 64.40 ± 1.17 63.22 ± 2.39 65.25 ± 1.09 65.72 ± 1.53 66.39 ± 1.34
AUC 62.98 ± 2.55 68.23 ± 1.18 68.07 ± 1.80 69.90 ± 1.26 70.84 ± 2.59 71.40 ± 1.81

5% ACC 64.79 ± 1.16 66.23 ± 0.88 66.82 ± 0.89 68.66 ± 0.73 68.41 ± 0.92 68.97 ± 0.46
AUC 68.85 ± 1.53 70.99 ± 0.03 72.27 ± 1.19 73.97 ± 1.28 74.31 ± 1.04 74.99 ± 1.00

10% ACC 64.72 ± 0.45 66.92 ± 1.10 67.71 ± 0.69 69.42 ± 1.23 69.19 ± 0.58 69.99 ± 0.97
AUC 68.97 ± 0.66 71.57 ± 0.99 73.55 ± 0.60 75.09 ± 1.29 74.92 ± 0.87 75.90 ± 1.35

50% ACC 67.41 ± 1.31 68.87 ± 0.89 69.98 ± 0.69 70.85 ± 0.92 70.71 ± 1.01 71.46 ± 0.91
AUC 72.53 ± 1.08 74.21 ± 1.11 76.02 ± 0.87 76.86 ± 1.47 77.03 ± 0.95 77.77 ± 1.17

100% ACC 70.29 ± 1.10 69.84 ± 1.11 70.73 ± 0.70 71.44 ± 1.25 71.02 ± 0.73 72.13 ± 1.46
AUC 76.17 ± 1.02 75.47 ± 0.86 76.20 ± 0.54 77.78 ± 1.31 77.99 ± 0.90 78.73 ± 1.21
Fig. 3. Visualization of the AUC development comparing from scratch and multi-task pre-training on all tasks on MIMIC-III. The improvement decreases with higher label ratios.
For the ACU task pre-training only improves performance for small label ratios up to 10%.
4.3.2. Effect of pre-training
The focus of our work lies in investigating the benefit of pre-training

for patient-level prediction tasks, especially for scenarios with limited
labeled data. To evaluate our proposed pre-training techniques, we
compare the performance of our model trained from scratch to our pre-
trained and subsequently fine-tuned model. In general, pre-training is
especially suitable to be applied in scenarios where much more data
is available for pre-training than for fine-tuning. To simulate this case,
we artificially create scenarios with limited labeled data, by fine-tuning
the model only with a subset of the given labels. We vary the label
ratio, meaning the number of labels used for fine-tuning, between 1%,
5%, 10%, 50%, and 100%. On the other hand, we always use 100% of
the given data for unsupervised pre-training. The results emphasize the
benefits of our unsupervised pre-training with limited labels.

MIMIC-III is a complex dataset, including time-series features and
multiple challenging downstream tasks. This allows us to evaluate
and compare all of our proposed pre-training strategies on multiple
prediction tasks.

For LOS the results are shown in Table 13. Further, the development
of the improvement through pre-training for different label ratios is
visually shown in Fig. 3 for all tasks on MIMIC-III. For LOS, both
accuracy and AUC improve significantly for all label ratios compared to
from scratch training, independent of the used pre-training task. When
comparing the different pre-training tasks (TM, BM, TFM, and PM), it
can be observed that Feature and Patient Masking consistently outper-
form Block-wise Masking and Treatment Prediction. Further Treatment
Prediction overall shows the least positive effect. Considering the diffi-
culty of the pre-training tasks, the easier tasks tend to be less beneficial
than the harder ones. Treatment Prediction only asks the model to
predict binary indicators if a certain treatment was applied, while the
Feature Masking task includes predicting time-series features describing
the treatment application in each hour. So conceptually Treatment
Prediction is a sub-task of Feature Masking. Similarly during Block-wise
Masking the model has to predict feature values only for a few hours
while having access to past and future measurements, which makes the
task simpler compared to predicting a fully masked feature as in Feature
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Masking. These results indicate that a certain level of complexity is
beneficial for a valuable pre-training task.

For acuity (ACU) prediction we consider both the original as well as
our adapted ACU-4 task. However, during our experiments we observed
that many of the 18 classes from the original task are not predicted
at all, neither when training from scratch nor when fine-tuning. This
supports our claim, that the task is not well defined including missing,
very rare, and very similar classes. Therefore, we introduce our newly
defined ACU-4 task to get more meaningful results.

For ACU prediction, pre-training improves both metrics for small
label ratios (1% till 10%) as shown in Table 14. For higher label
ratios only accuracy improves. Again Feature Masking consistently
outperforms Block-wise Masking and Treatment prediction shows the
least performance improvements. When training on the adapted ACU-4
task, a clear benefit of all pre-training methods can be observed (see
Table 15). Similar to the LOS task, Treatment Prediction is the least
beneficial and Feature Masking is the most beneficial, supporting our
hypothesis that the difficulty of the pre-training tasks influences their
effect. However, for both acuity prediction tasks (ACU and ACU-4) Pa-
tient Masking shows less benefit than Block-wise and Feature Masking,
indicating that the information of other patients is less relevant for
acuity prediction than for length-of-stay prediction. Generally, Patient
Masking is a complex task, but it requires the information of other
patients to be helpful in solving the end task. Therefore the value
of Patient Masking is dependent on the correlation between different
patients, which can differ depending on the targeted task. This also
shows that the selection of the optimal pre-training task depends on
the current downstream task.

Multi-Task Pre-training further improves the performance after fine-
tuning for all downstream tasks, LOS, ACU, and ACU-4. This indicates
that the different tasks convey at least partially complementary knowl-
edge and together lead to an improved understanding of the data.
Moreover, as described previously the effectiveness of the single pre-
training tasks differs between tasks, showing that the selection of the
best pre-training task is dependent on the downstream task. With Multi-
Task Pre-training this decision can be circumvented, as it generally
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Table 14
Performance of the proposed model in accuracy and AUC trained from scratch (SC) or fine-tuned after pre-training (FT) with the different proposed pre-training tasks (TP, BM,
TFM, PM, MT) for different label ratios on the ACU task.

MIMIC-III: ACU

Labels Metric SC FT:TP FT:PM FT:BM FT:TFM FT:MT

1% ACC 28.10 ± 2.94 30.019 ± 4.30 32.25 ± 1.59 33.31 ± 2.19 34.30 ± 2.73 33.17 ± 1.96
AUC 58.51 ± 0.80 59.39 ± 2.41 60.86 ± 0.94 59.59 ± 2.70 60.10 ± 2.09 61.43 ± 1.86

5% ACC 35.16 ± 1.88 36.76 ± 1.04 39.06 ± 1.20 39.77 ± 1.05 40.57 ± 0.97 40.86 ± 0.79
AUC 67.06 ± 2.84 63.22 ± 2.23 66.56 ± 1.33 66.93 ± 2.25 67.55 ± 1.58 68.58 ± 1.27

10% ACC 36.69 ± 1.06 36.86 ± 3.49 40.71 ± 0.75 41.93 ± 0.95 42.47 ± 1.01 41.91 ± 1.15
AUC 69.44 ± 2.55 64.28 ± 3.08 66.43 ± 1.86 68.38 ± 2.35 69.13 ± 0.91 69.77 ± 1.98

50% ACC 42.68 ± 1.57 43.52 ± 1.20 42.98 ± 1.29 44.81 ± 0.23 44.87 ± 0.98 45.39 ± 0.71
AUC 77.07 ± 2.22 72.30 ± 2.09 68.88 ± 3.15 72.35 ± 3.95 73.78 ± 1.83 73.72 ± 2.39

100% ACC 43.67 ± 0.83 44.71 ± 1.06 43.78 ± 1.34 45.47 ± 0.58 46.27 ± 0.76 46.26 ± 0.85
AUC 79.42 ± 2.72 73.75 ± 2.00 70.66 ± 2.60 75.60 ± 3.48 75.42 ± 1.66 75.54 ± 2.35
Table 15
Performance of the proposed model in accuracy and AUC trained from scratch (SC) or fine-tuned after pre-training (FT) with the different proposed pre-training tasks (TP, BM,
TFM, PM, MT) for different label ratios for the ACU-4 task. The best and second-best results per label ratio of all single-task pre-training methods and from-scratch training are
marked as bold/green.

MIMIC-III: ACU-4

Labels Metric SC FT: TP FT: PM FT: BM FT: TFM FT: MT

1% ACC 41.03 ± 2.86 43.10 ± 2.61 45.16 ± 2.58 44.78 ± 3.14 46.23 ± 2.79 46.24 ± 2.31
AUC 65.67 ± 1.95 65.70 ± 1.27 68.13 ± 1.76 68.40 ± 3.07 70.21 ± 2.17 70.16 ± 1.97

5% ACC 46.33 ± 2.05 48.10 ± 0.71 50.49 ± 1.27 50.71 ± 1.16 51.77 ± 0.63 52.68 ± 1.51
AUC 71.00 ± 1.17 70.84 ± 0.95 73.59 ± 1.09 75.09 ± 0.65 75.62 ± 0.72 76.01 ± 1.10

10% ACC 49.93 ± 1.02 50.71 ± 0.82 51.63 ± 0.75 52.82 ± 1.48 53.77 ± 1.27 54.41 ± 1.73
AUC 73.99 ± 0.64 73.07 ± 0.28 75.17 ± 1.06 76.90 ± 0.91 77.09 ± 0.71 77.67 ± 0.79

50% ACC 54.02 ± 1.27 54.42 ± 1.16 53.76 ± 1.40 55.93 ± 1.28 56.17 ± 1.18 56.30 ± 1.27
AUC 78.28 ± 0.56 77.69 ± 0.65 77.70 ± 0.98 79.63 ± 0.63 79.66 ± 0.60 79.92 ± 0.70

100% ACC 55.41 ± 0.87 54.98 ± 1.20 54.75 ± 1.03 56.86 ± 1.26 56.84 ± 0.71 57.11 ± 1.19
AUC 79.33 ± 0.72 78.91 ± 0.76 78.72 ± 0.90 80.44 ± 0.67 80.51 ± 0.45 80.77 ± 0.78
Table 16
Performance of the proposed model in accuracy and AUC trained from scratch (SC) or
fine-tuned after pre-training (FT) for different label ratios on the TADPOLE dataset.

TADPOLE

Labels Metric SC FT

1% ACC 59.42 ± 8.40 78.89 ± 2.45
AUC 68.72 ± 12.74 93.49 ± 2.07

5% ACC 78.23 ± 6.83 83.37 ± 6.29
AUC 87.23 ± 4.91 94.99 ± 2.55

10% ACC 87.00 ± 4.86 87.71 ± 4.65
AUC 92.03 ± 3.39 95.96 ± 2.51

50% ACC 92.41 ± 3.69 91.52 ± 3.76
AUC 96.06 ± 2.48 97.23 ± 1.94

100% ACC 92.59 ± 3.64 92.24 ± 3.47
AUC 96.96 ± 2.23 97.52 ± 1.67

outperforms the best of the single methods. Consequently, Multi-Task
Pre-training is well suited as an out-of-the-box pre-training method, as
it is less dependent on the downstream task.

TADPOLE Additionally, we use the less complex TADPOLE dataset
to evaluate our method on multi-modal, but static clinical data. The
results of the fine-tuned model, which was pre-training with Static
Feature Masking, as well as the model trained from scratch for disease
prediction are shown in Table 16 and the performance development in
relation to the label ratio is visualized in Fig. 4. Even though TADPOLE
is a rather small dataset and thus also the amount of data used for pre-
training is limited, we show a significant benefit through pre-training.
Especially in settings with limited labels (1%, 5%, 10%) pre-training
helps to improve performance significantly. While the model trained
from scratch starts to overfit very fast when trained with very few
samples (e.g. around 50 samples for a label ratio of 1%), the pre-trained
model reaches a quite good performance, by quickly adapting to the
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Fig. 4. Visualization of the AUC development comparing from scratch and pre-training
on TADPOLE. Again the improvement decreases with higher label ratios.

provided samples. Moreover, the AUC continues to improve when pre-
training the model up to the full dataset size, showing that pre-training
helps to deal with the class imbalance in this dataset. This experiment
shows the value of our method for static, multimodal clinical data, and
the benefit of pre-training when labeled data is very limited.

When analyzing the confusion matrices for models trained from
scratch and pre-trained models, we can conclude that the major im-
provement through pre-training in binary tasks (LOS) lies in reducing
false negatives. For multi-class tasks such as on TADPOLE or ACU-4
prediction on MIMIC-III, false negatives are mainly reduced for the
minority classes while for the majority class false positives are reduced.
Overall, this shows that pre-training helps the model to miss fewer
positive cases, especially for minority classes.
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Table 17
Comparison to other pre-training methods on MIMIC-III. *MI and MT are the masked
imputation and multi-task pre-training proposed by McDermott et al. (2021). MI is an
unsupervised pre-training method, while MT is supervised.

LOS

Labels Metric MI* MT* Proposed

1% AUC 62 ± 3 67 ± 3 71.40 ± 1.81
gain +4 +9 +8.42

10% AUC 60 ± 2 65 ± 3 75.90 ± 1.35
gain −6 −1 +6.93

100% AUC 58 ± 3 64 ± 4 78.73 ± 1.21
gain −13 64 ± −7 +2.56

ACU

1% AUC 60 ± 4 60 ± 1 60.10 ± 2.09
gain +1 +1 +1.59

10% AUC 69 ± 3 70 ± 4 69.13 ± 0.91
gain +0 +1 −0.31

100% AUC 74 ± 2 74 ± 4 75.42 ± 1.66
gain −4.0 −4.0 −4.0

For the MIMIC-III dataset, McDermott et al. (2021) proposed a
benchmark for pre-training on EHR data and evaluated their method
among others on Length-of-Stay and Acuity Prediction. Table 17 shows
a direct comparison of the pre-training methods proposed by them and
our best-performing method (Multi-Task Pre-training). They propose
one unsupervised and one supervised pre-training method. In their
unsupervised method (MI), they mask and predict random time-points
of the EHR record, while for their supervised method (MT), they per-
form multi-task training on nine out of ten supervised patient outcome
prediction tasks and fine-tune the model on the task which was left
out. When comparing to the unsupervised masked imputation pre-
training our method is clearly superior, both in terms of overall AUC
as well as the performance gain achieved by pre-training, showing that
our masking strategies better adhere to the nature of this longitudinal
and heterogeneous data than simply masking random time points.
In comparison to the supervised multi-task pre-training, our method
achieves similar performance gains with 1% labels but continues to
improve performance in Length-of-Stay prediction also for higher label
ratios, while the multi-task pre-training starts to degrade performance.
The good results in comparison to this method are especially notable,
as we do not use any labels for pre-training, while the supervised
pre-training considers labels of multiple prediction tasks. Overall, the
results indicate that our modeling of the data as a patient population
graph together with our pre-training approaches, which are specifically
designed for clinical (time-series) data, are better suited for the given
scenario.

Besides the work of Gupta et al. (2020) also propose a method for
pre-training on MIMIC-III for phenotype and mortality prediction, but
they neither provide an implementation nor sufficient details to re-
implement their method from scratch. The results they reported for
their unsupervised transfer learning method show only slight improve-
ments in the AUROC score over an LSTM trained from scratch while
leading to a slightly worse AUPRC score. For disease prediction on
TADPOLE, no previous work proposed a pre-training approach.

Overall we show, that our unsupervised pre-training pipeline helps
remarkably to improve performance on both datasets and for multi-
ple patient outcome prediction tasks over patient population graphs.
As expected, the highest improvements can be seen in settings with
limited labels, however, even when using all labels a notable improve-
ment remains. Further, it can be observed that the pre-trained models
mostly have a lower standard deviation than the models trained from
scratch, indicating that pre-training also improves model stability. From
comparing our different pre-training tasks, we can conclude that the
difficulty of the pre-training tasks correlates with their effectiveness.
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Table 18
Performance of the proposed model in accuracy, AUC, and F1 score trained from scratch
(SC) or fine-tuned after pre-training on MIMIC-III (FT) for different label ratios on the
Sepsis prediction task.

Sepsis

Labels Metric SC FT

1% ACC 89.32 ± 1.23 88.95 ± 2.01
AUC 68.18 ± 4.29 70.25 ± 3.01
F1 56.32 ± 1.44 58.28 ± 1.40

5% ACC 89.91 ± 1.12 89.84 ± 0.49
AUC 75.60 ± 4.47 77.16 ± 2.05
F1 60.74 ± 1.31 61.65 ± 1.77

10% ACC 91.12 ± 0.45 90.86 ± 1.16
AUC 80.04 ± 0.86 79.80 ± 1.26
F1 62.70 ± 1.98 64.43 ± 2.35

50% ACC 91.32 ± 0.71 92.47 ± 1.15
AUC 80.98 ± 1.77 83.73 ± 0.93
F1 63.95 ± 2.13 66.94 ± 1.33

100% ACC 92.49 ± 0.38 92.76 ± 0.31
AUC 83.40 ± 1.38 84.49 ± 1.27
F1 64.62 ± 1.05 67.59 ± 1.31

Fig. 5. Visualization of the F1 development comparing from scratch and multi-task pre-
training on the Sepsis prediction dataset. Here the performance improvement remains
nearly constant for different label ratios.

4.3.3. Application to transfer learning
To evaluate our method in a transfer learning setting, we pre-train

our model with multi-task pre-training on MIMIC-III and then fine-
tune it on the Sepsis Prediction dataset, which provides overlapping
but different features per patient. The results of this experiment are
shown in Table 18. As the sepsis prediction task has a very strong
class imbalance, we introduce the F1 score as an additional metric.
For the sake of completeness, we also report accuracy and AUC such
as for the other experiments, but due to the high imbalance, these
metrics are less meaningful. The performance development (F1 score)
in relation to the label ratio is visualized in Fig. 5. In comparison to
the self-supervised settings, where the pre-training effect decreases for
higher label ratios, the improvement in transfer learning remains nearly
constant for different label ratios. This indicates as we pre-train on a
different dataset than we fine-tune, the size difference between the pre-
training and fine-tuning set is less relevant. Further, when comparing
the from scratch performance to the performance of the pre-trained
model, it can be seen that the AUC improves in most cases and the F1
score improves for all label ratios, while accuracy is mostly similar for
both models. This shows, that the pre-trained model handles the class
imbalance better and improves in predicting the rare positive class by
reducing the false negative predictions. This is an important property,
as for sepsis prediction it is especially important to classify the positive
cases correctly to intervene in time. Overall, even though the MIMIC-III
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Fig. 6. T-sne visualizations of input and pre-trained embeddings for disease prediction on TADPOLE, LOS, and ACU-4 prediction on MIMIC-III and early prediction of sepsis. The
upper row shows the input embeddings and the lower row the pre-trained embeddings. For MIMIC-III we only used the embeddings of five graphs to keep the visualization clear.
For the Sepsis Prediction dataset, the model was pre-trained on MIMIC-III with multi-task pre-training.
Table 19
Ablations to test the Graphormer module by replacing it with a linear layer or different GNNs on MIMIC-III (a) downstream task performance trained from scratch (b) results of
fine-tuning (FT) on 1% labels, compared to training from scratch (SC) (c) performance in pre-training task.

Linear GCN GAT GIN Proposed

a ACC 67.25 ± 01.11 68.74 ± 01.50 69.22 ± 1.35 68.94 ± 1.11 70.29 ± 01.10
AUC 72.69 ± 00.97 72.64 ± 01.10 74.43 ± 1.10 74.84 ± 1.18 76.17 ± 01.02

b

ACC 64.71 ± 0.84 61.77 ± 2.22 62.79 ± 0.91 61.78 ± 1.37 69.42 ± 1.23
gain +0.93 +1.73 +2.34 +1.10 +4.70
AUC 67.94 ± 1.20 66.03 ± 2.40 66.57 ± 2.03 65.65 ± 1.77 75.09 ± 1.29
gain +0.22 +3.09 +3.11 +2.13 +6.12

c RMSE 0.838 ± 0.015 0.941 ± 0.027 0.810 ± 0.352 0.951 ± 0.029 0.783 ± 0.011
F1 77.59 ± 0.61 69.97 ± 0.39 81.35 ± 0.51 70.64 ± 0.59 81.58 ± 0.41
and the Sepsis Prediction dataset encompass different features, we show
that pre-training on MIMIC-III can be used to improve sepsis prediction
performance notably, implying that the knowledge acquired during pre-
training supports a general understanding of clinical population graphs
and is not dataset-specific. This broadens the use case of our method
substantially, as it allows pre-training on data with differing features.
Thereby, for example, a small hospital with limited access to (labeled)
data can use data from larger hospitals for pre-training. Further, it
also allows to pre-train with data that was recorded with another
application in mind and thus does not exactly match the features of
the task at hand.

4.3.4. Effect of embedding space
To give an intuition of why the model initialization learned during

pre-training is superior to a random model initialization, we show
the effect of pre-training on the distribution of the patient record
embeddings (Fig. 6). We compare the embeddings computed by the pre-
trained model to the embeddings computed by a randomly initialized
model. To visualize these embeddings we use t-sne for dimensionality
reduction and visualize the data in a 2D space. Fig. 6 shows the visual-
izations for both the untrained and the pre-trained models, which are
extracted directly before the decoder layer. We used Feature Masking
as a pre-training task for these visualizations.

Even though no labels were used for pre-training, the classes are
clearly better separated for the pre-trained embeddings. Especially for
the TADPOLE dataset, the classes are quite well separated after pre-
training (Fig. 6(a)). This explains why for small label ratios, where
from scratch training achieves bad results, the effect of pre-training is
very high. For the MIMIC-III dataset, pre-training does not lead to a
clear class separation, however, in the pre-trained embeddings more
clusters of single classes can be seen (Fig. 6(b),(c)). A similar effect can
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be observed for the Sepsis Prediction dataset. Even though pre-training
was performed on MIMIC-III, the septic patients seem to be clustered at
the sides of the space, while the non-septic patients are more frequent
in the center of the space (Fig. 6(d)). When fine-tuning given this pre-
trained initialization, which already clusters nodes with the same class
together, the model can easier learn to separate the classes, enabling it
to quickly learn a good separation even with little labeled data.

4.3.5. Ablation studies
We perform several ablation studies to evaluate different parts

of our proposed model on pre- and downstream task training. All
pre-training ablations are performed with limited labels to ensure a
well-observable effect in fine-tuning. Specifically, we use a label ratio
of 10% on the larger MIMIC-III dataset and of 1% on the TADPOLE
dataset. Further, for MIIMC-III we selected one pre-training method and
one downstream task for the ablation studies. We perform all ablations
using the LOS task and Feature Masking as pre-training, as this pre-
training method was overall the best performing one. Further, we
analyze the contribution of the different pre-training tasks during Multi-
Task Pre-training. We further performed an analysis of the wrongly
classified samples, which can be found in the supplementary material.

Effect of Graphormer: We replace the Graphormer module with a
linear layer or different graph neural networks (GCN Kipf and Welling,
2016, GAT Veličković et al., 2018 and GIN Xu et al., 2018) and train
the model from scratch on the full dataset (see results in Tables 19(a)
and 20(a)). The number of layers, the learning rate, and the training
epochs are optimized for every conducted ablation.

On the MIMIC-III dataset, the proposed model outperforms the
linear model as well as all models based on other GNN architectures,
showing that for this more complex dataset using a population graph as
well as the use of the attention-based Graphormer layers are beneficial.
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Table 20
Ablations to test the Graphormer module by replacing it with a linear layer or different GNNs on TADPOLE (a) downstream task performance trained from scratch (b) results of
fine-tuning (FT) on 1% labels, and performance gain compared to training from scratch (c) performance in pre-training task.

Linear GCN GAT GIN Proposed

a ACC 91.14 ± 02.62 74.27 ± 06.41 73.09 ± 5.94 73.47 ± 6.85 92.59 ± 03.64
AUC 97.77 ± 01.59 89.89 ± 04.12 89.65 ± 4.39 89.40 ± 4.81 96.96 ± 02.23

b

ACC 73.56 ± 12.30 61.87 ± 5.03 60.58 ± 5.46 59.59 ± 4.80 74.39 ± 7.58
gain +12.26 +3.67 +0.45 +5.02 +14.97
AUC 92.33 ± 3.47 77.68 ± 4.84 74.52 ± 6.08 77.25 ± 5.05 89.98 ± 3.57
gain +18.33 +9.62 +3.14 +9.17 +21.26

c RMSE 0.140 ± 0.010 0.140 ± 0.020 0.131 ± 0.018 0.126 ± 0.012 0.116 ± 0.008
ACC 65.33 ± 4.76 81.71 ± 5.25 80.78 ± 3.67 80.86 ± 5.12 69.47 ± 6.20
For TADPOLE, the linear model reaches slightly better performance in
terms of AUC, while the less complex GNNs reach inferior performance
compared to the more complex Graphormer model. The good perfor-
mance of the linear model shows, that using a population graph is
not as beneficial for TADPOLE, which is a relatively small and easy
dataset. Instead, each node’s features give sufficient information to
solve the downstream task. This is also apparent when considering the
worse performance of GCN, GAT, and GIN. These models are based on
neighborhood aggregation and in each update step the information of
only the neighbors can be used, which seems to have a negative effect.
Graphormer on the other hand can counteract this effect by using a
node-level attention mechanism over the full graph, making it possible
to select information from specific nodes in the graph or none at all.

Further, we perform pre-training followed by fine-tuning with lim-
ited labels for the different ablations of our model and compare the
effect of pre-training the different ablation models with the effect on
our proposed model. These results are shown in Tables 19(b) and 20(b).
Our proposed unsupervised pre-training method proves to be beneficial
for the linear model as well as for the other GNN models, indicating
that the pre-training technique is transferable to other models as well.
However, the effect of pre-training is highest for the proposed graph
transformer based model, showing the value of combining transformer
based models with masking-based pre-training tasks. On MIMIC-III we
can also see a benefit of using a graph model compared to the linear
model in the pre-training effect, showing that for this complex dataset
the modeling and processing as a population graph during pre-training
has a positive effect.

Tables 19(c) and 20(c) show the masked imputation performance
during pre-training, measured by RMSE for continuous features, so
measurement features for MIMIC-III and imaging features for TAD-
POLE, F1 score for the discrete treatment features in MIMIC-III and
accuracy for the discrete TADPOLE features (apoe4+cognitive tests).
For the cognitive tests in TADPOLE, we use clinically-motivated error
margins in which a prediction is considered correct, to compute the
accuracy. The used margins are shown in Table 21. The predicted
cognitive test scores are ordinal features, so close scores imply a similar
performance of the patient. As many possible scores exist, it is a very
hard task to make an accurate prediction. By applying error margins,
we can assess better, if the model predicts test results in the correct
range of values. Overall the results show, that the performance in the
pre-training task is not always directly linked to the benefit of pre-
training. Especially on TADPOLE, it can be observed, that while GCN,
GAT, and GIN perform very well in predicting the cognitive test results,
their pre-training benefit is restricted. However, their performance in
predicting the imaging features is less than for the proposed model.
On MIMIC-III, the proposed Graphormer-based model outperforms all
other models in the pre-training task, which is in line with the superior
fine-tuning results. In summary, while Graphormer has not always the
best performance in the pre-training task, the extracted knowledge is
used more beneficially for improving the downstream task, leading to
a better fine-tuning performance on both datasets.

Moreover, to better understand the effect of the patient-level at-
tention in the graph transformer module, we visualize the learned
14
Table 21
Clinically-motivated, feature-dependent error margins for measuring cognitive test
results prediction performance during pre-training on TADPOLE.

Cognitive test Number of classes Error margin

CDRSB 19 4
ADAS11 107 15
MMSE 11 2
RAVLT_immediate 68 5

Fig. 7. Visualization of the node-level attention of Graphormer. The used color map
displays the highest attention in red, going to yellow, green, and blue for the lowest
attention. The current node for which the attention is computed is visualized larger in
the image and indicated by the red arrows. The attention is distributed over the whole
graph but focuses more on closer nodes.

attention of the best-performing models for two samples from the
TADPOLE and MIMIC-III dataset for Alzheimer’s disease and length-
of-stay prediction in Fig. 7. We compute the attention by averaging
over the layers and heads of the model. It can be observed that the
attention to patients close to the current patient is higher than to more
distant ones. Moreover, it can be seen that while the current patient
is always attended notably, the model also takes other patients into
account, showing the model makes use of the information provided in
the graph.

Effect of Transformer: For MIMIC-III, we insert transformer layers
in the encoder to deal with time-series data. To test the effect of these
transformer layers, we compare the performance with and without
these layers for both from scratch training and fine-tuning. The results
of this ablation are shown in Table 22. Part (a) in Table 22 shows
the results, when training the proposed model from scratch on the
full dataset with and without the transformer layer. This results in a
reduction of accuracy and AUC, showing that the transformer layers
are helpful for processing the time-series input data of MIMIC-III.

For pre-training on MIMIC-III, the model needs to predict time-
dependent outputs, suggesting that here the transformer layers should
be especially important, as they can understand the temporal context.
To investigate the effect of transformer during pre-training, we remove
the transformer layer and compare the effect of pre-training the model
when fine-tuning it with limited labels, with and without the trans-
former layer (see Table 22(b)). Further, we show the performance in the
pre-training task for both models (see Table 22(c)). For training from
scratch with limited labels, the use of transformer layers improves per-
formance. However, the fine-tuned model without transformer layers
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Table 22
All results when removing the transformer layers on MIMIC-III. (a) proposed model
on the full dataset without pre-training (b) from scratch training and fine-tuning with
10% labels (c) performance in pre-training task.

Without transformer With transformer

a ACC 69.39 ± 0.60 70.29 ± 1.10
AUC 75.03 ± 1.23 76.17 ± 1.02

b

ACC - SC 63.79 ± 0.54 64.72 ± 0.45
ACC - PT 69.34 ± 1.05 69.42 ± 1.23
gain +5.55 +4.70

AUC - SC 68.41 ± 1.51 68.97 ± 0.66
AUC - PT 75.19 ± 1.03 75.09 ± 1.29
gain +6.78 +6.12

c RMSE 0.770 ± 0.016 0.783 ± 0.011
F1 80.06 ± 0.49 81.58 ± 0.41

reaches a slightly better accuracy and a slightly worse AUC than with
the transformer layer. Overall the performance is very similar to the
fine-tuned model with transformer layers. Likewise, the performance in
the pre-training task of these two models is very similar. This indicates
that the pre-trained Graphormer-based model is expressive enough to
learn and benefit from the pre-training task and thus less reliant on the
transformer layers.

Overall, the transformer layers improve model performance when
trained from scratch. However, for pre-training Graphormer, they have
little effect, as Graphormer alone already performs well in the pre-
training task and benefits from it in fine-tuning.

Multi-task Pre-Training: Our results show that combining different
re-training tasks can help to improve downstream prediction results
fter fine-tuning even further. In our experiments, we combined all
our pre-training tasks we proposed for clinical time-series data as
iven in the MIMIC-III dataset. To analyze how important each of
he four proposed tasks is for multi-task pre-training, we pre-train our
odel once with all combinations of three pre-training tasks, always

eaving out the fourth task. We then fine-tune the models for Length-
f-Stay prediction on MIMIC-III and compare the results as shown in
able 23. Our main observation is, that using all four tasks in most
ases delivers the best results or is very close to the best result after
ine-tuning on the downstream task. This indicates that all four tasks
re important to improve the model’s understanding of some aspects of
he data. Further, leaving our Patient or Feature Masking leads to the
verall worst results, while when leaving out Treatment Prediction or
lock-wise Masking the performance remains higher. This shows that
atient and Feature Masking have a higher contribution to the overall
erformance. This aligns with the results from pre-training with single
re-training tasks for LOS, as here these two tasks also lead to the
ighest benefit for downstream task performance.
Effect of high-dimensional imaging data:
We demonstrated the applicability of our method for fusing imag-

ng and non-imaging data on the TADPOLE dataset, which combines
eatures extracted from MRI and PET with cognitive test results, de-
ographic data and, genetics. To further analyze the capability of our
odel when using high-dimensional imaging features and showing the
romise of fusing multi-modal features we extended our experiments
n TADPOLE to a higher number of input features. The increased
eature set includes 9 cognitive test results, 7 genetic and demographic
eatures as well as 326 imaging features from three imaging modalities
MRI, PET, DTI), including various biomarkers and some image quality
easures. Further, we analyze the performance of our model when

estricting the input to only imaging and only non-imaging features.
able 24 shows the results of this experiment. It can be observed that
he performance of our model remains very similar when introducing
he high-dimensional imaging features, showing the robustness of our
odel to this kind of data. When using only imaging features the per-
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ormance drops significantly, and also dropping the imaging features
leads to a performance decrease. This shows the importance of the
multi-modal feature fusion our method enables.

Furthermore, our general approach can be not only valuable in
the analysis of static imaging biomarkers such as in TADPOLE, but
also for temporal imaging biomarkers, extracted from dynamic imaging
modalities such as dynamic MRI (Pötsch et al., 2021; Zheng et al.,
2021), PET (Noortman et al., 2020) or Ultrasound (Ma et al., 2021).
Further, it can be applied to longitudinal imaging studies with frequent
measurements, such as in the e.g. positioning verification of non-small
cell lung cancer, where CT scans are usually acquired daily and their
features could be used for treatment adaption (van Timmeren et al.,
2017).

We further demonstrate that our model can be adapted to a set-
ting including spatial images. Following Soenksen et al. (2022), who
analyzed the use of multi-modal data for patient outcome prediction,
we collect fused data from the MIMIC-IV (Johnson et al., 2020) and
the MIMIC-CXR (Johnson et al., 2019) datasets. Each patient record
includes demographic, measurement, and treatment data very similar
as described in section 4.1.1. (MIMIC-III). Further, each record includes
one Chest X-ray image of the patient. We use this dataset in order
to test the applicability of our model in a setup where numerical
EHR information, as well as spatial imaging data, is available. We
consider the task of 48 h mortality prediction given the demographics
of the patient, an X-ray image at a time-point t, and measurement and
treatment data about the last 24 h before time-point t. The task is to
predict whether the patient will die within the next 48 h. To integrate
the spatial imaging information into our model, we employ a chest X-
ray encoder based on a DenseNet backbone, pre-trained for ChestXRay
pathology classification (Cohen et al., 2022). The used image encoder
has around 6.9 million parameters, of which we fine-tune the last block
of 2.2 million parameters. In contrast, the graph encoder has around
5.6 million parameters. Our experiments showed that these encoder
sizes were a good trade-off avoiding overfitting but allowing to capture
all information in the data. We apply a late fusion approach to fuse
the embedding representation given by the X-ray encoder with the
output of our data embedding module. For this, we concatenate the
two representations before processing them with our decoder.

Table 25 shows the results of this experiment. We observe a sub-
stantial performance increase by fusing the imaging and non-imaging
data compared to only considering a single data source, demonstrating
that our model successfully fuses the multi-modal data and showing
the applicability of our model for tasks including spacial imaging
data. In the context of pre-training, integrating imaging data needs
further investigation, as our pre-training method is primarily designed
for understanding heterogeneous but numerical inputs. Therefore, our
pretrained EHR encoder may not be sufficient for effectively capturing
the relationships between the EHR data and the imaging data. Further,
during the pre-training phase, our method did not encounter any spatial
imaging data or the combination of EHR and imaging data. As a
result, the pre-trained model may not have developed an adequate
understanding of the relationships between these two data types, which
could have contributed to the lack of improvement in the new setting.
We believe it is an important step for applications involving spatial
image information to investigate joined pre-training on spacial imaging
data and other EHR data, which could be a potential future work.

Overall, our results show the applicability of our model to settings
with spatial imaging data and further highlight the importance of
considering comprehensive patient data in the field of medical imaging
analysis.

5. Conclusion

In this paper, we propose multiple novel unsupervised pre-training
methods for multi-modal clinical record data based on masked impu-
tation. We propose to model the clinical data in a patient population
graph, such that the model can use other patients’ information for
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Table 23
Results of multi-task pre-training with all four tasks compared to training with all but one task. The best result per label ratio is bold, while the worst and second-worst results
are marked with bold red and red. Fine-tuning on LOS prediction.

MIMIC-III: Multitask Pre-training

Labels Metric MT MT: no TP MT: no BM MT: no TFM MT: no PM

1% ACC 66.39 ± 1.34 66.01 ± 0.77 66.07 ± 1.74 66.37 ± 1.37 66.11 ± 1.12
AUC 71.40 ± 1.81 70.57 ± 1.26 71.08 ± 2.36 71.45 ± 1.46 71.42 ± 1.76

5% ACC 68.97 ± 0.46 68.98 ± 0.98 69.15 ± 1.07 68.59 ± 0.56 68.71 ± 1.06
AUC 74.99 ± 1.00 74.81 ± 1.08 74.62 ± 1.36 74.32 ± 1.05 74.78 ± 1.21

10% ACC 69.99 ± 0.97 69.54 ± 1.05 69.66 ± 0.60 69.10 ± 0.71 69.03 ± 1.21
AUC 75.90 ± 1.35 75.53 ± 1.06 75.70 ± 1.10 74.77 ± 0.48 75.40 ± 1.09

50% ACC 71.46 ± 0.91 71.10 ± 0.56 71.29 ± 1.12 70.85 ± 0.88 71.01 ± 0.92
AUC 77.77 ± 1.17 77.79 ± 0.85 77.58 ± 1.23 77.23 ± 1.15 76.98 ± 0.91

100% ACC 72.13 ± 1.46 72.03 ± 0.61 71.53 ± 0.62 71.34 ± 0.85 71.61 ± 0.64
AUC 78.73 ± 1.21 78.69 ± 0.91 78.44 ± 1.22 78.27 ± 1.00 77.88 ± 0.78
.

Table 24
Results on TADPOLE dataset with an increased feature set. Further, we analyze the
model performance when restricting the input to only imaging or non-imaging features

Ours All features Imaging Non-imaging

AUC 96.96 ± 2.13 96.14 ± 3.37 72.74 ± 2.18 95.53 ± 2.33
ACC 92.59 ± 3.64 91.31 ± 4.85 42.90 ± 2.90 89.39 ± 2.56

Table 25
Results on the merged MIMIC-IV and MIMIC-CXR dataset for mortality prediction using
only imaging, only non-imaging information or fused information. We further show the
effect of our pre-training in this setting.

Imaging Non-imaging Fused Fused PT

AUC 73.10 ± 6.91 82.95 ± 1.37 85.87 ± 3.37 84.50 ± 1.74
ACC 67.90 ± 9.82 74.09 ± 4.73 78.54 ± 3.79 75.24 ± 2.99

both pre-training and fine-tuning. For this setup, we present several
pre-training tasks, designed to learn a general understanding of multi-
modal clinical data. Moreover, we propose a network architecture
based on transformer and graph transformer for pre-training and learn-
ing on patient population graphs built from heterogeneous clinical data.
We show the superiority of the proposed pipeline for various prediction
tasks on three datasets and provide an extensive analysis of our method
showing different ablation studies. We test our method on MIMIC-III
and TADPOLE for self-supervised pre-training and a Sepsis Prediction
dataset in a transfer learning setup. All datasets contain medical patient
records but encompass different features. We show that pre-training
improves results for all datasets over the full dataset size both in the
self-supervised as well as the transfer learning scenario. Overall, pre-
training proves to be especially helpful for scenarios where only a
limited amount of labeled data is used for fine-tuning. Moreover, we
compare our different pre-training approaches to one another, showing
that more complex tasks tend to have a larger positive impact on
the prediction results of downstream tasks. Finally, we combine our
proposed pre-training tasks in a multi-task setup, leading to an addi-
tional performance gain. Our pre-training methods are all unsupervised
and as such task-independent, making them likewise applicable to
self-supervised pre-training and transfer learning. Thus the proposed
pipeline opens a path to improve learning over multi-modal clinical
data on small datasets or datasets with limited labels via pre-training
on large unlabeled collections of clinical records from either the same
or a different data source.
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